Lisa Goodrich

Lisa Goodrich, Ph.D.

Professor of Neurobiology, Harvard Medical School
Vice Chair of Neurobiology, Harvard Medical School

Assembly and Function of Auditory Circuitry

Our auditory system allows us to hear the rich sounds of everyday life—music, the voices of friends and family, birdsongs—as well as sounds that cause alarm or signal danger. Crucial to the sense of hearing is the accurate wiring and function of the intricate neural circuitry within and between the ear and the brain. While much has been learned about the cellular and molecular building blocks underlying developmental processes from cell fate specification to synapse formation and refinement, we still do not fully understand how the specialized circuitry of the auditory system arises during development, matures and functions, and exhibits resiliency in the face of stressors or aging.

To learn how auditory neural networks acquire their unique properties and function across the lifespan, the Goodrich lab employs mouse genetics, single cell sequencing, and sensitive anatomical analyses, together with timelapse imaging and physiological approaches. We investigate circuit assembly, maintenance, and function in the auditory system both in the ear and the auditory brainstem. Peripherally and centrally, specific classes of neurons acquire unique genetic identities, physiological properties, and elaborate morphologies and connectivity patterns that are appropriate for their role in the circuit. We are studying how these features develop, from the genetic and epigenetic programs underlying acquisition of spiral ganglion neuron subtype identity, to the development, maintenance, and degeneration of their specialized synapses that ensure rapid and reliable transmission from the inner ear to the brain. Within the brain, we are examining the molecular, genetic, and physiological properties of neurons that receive auditory information from the ear, as well as those that send signals to the ear and shape auditory function and responses to stressors, in part by interactions with the immune system.

Publications View
Runx1 controls auditory sensory neuron diversity in mice.
Authors: Authors: Shrestha BR, Wu L, Goodrich LV.
Dev Cell
View full abstract on Pubmed
Fat3 acts through independent cytoskeletal effectors to coordinate asymmetric cell behaviors during polarized circuit assembly.
Authors: Authors: Avilés EC, Krol A, Henle SJ, Burroughs-Garcia J, Deans MR, Goodrich LV.
Cell Rep
View full abstract on Pubmed
Diversity of developing peripheral glia revealed by single-cell RNA sequencing.
Authors: Authors: Tasdemir-Yilmaz OE, Druckenbrod NR, Olukoya OO, Dong W, Yung AR, Bastille I, Pazyra-Murphy MF, Sitko AA, Hale EB, Vigneau S, Gimelbrant AA, Kharchenko PV, Goodrich LV, Segal RA.
Dev Cell
View full abstract on Pubmed
Making sense of neural development by comparing wiring strategies for seeing and hearing.
Authors: Authors: Sitko AA, Goodrich LV.
Science
View full abstract on Pubmed
Sex-specific role for dopamine receptor D2 in dorsal raphe serotonergic neuron modulation of defensive acoustic startle and dominance behavior.
Authors: Authors: Lyon KA, Rood BD, Wu L, Senft RA, Goodrich LV, Dymecki SM.
eNeuro
View full abstract on Pubmed
Neuronal processes and glial precursors form a scaffold for wiring the developing mouse cochlea.
Authors: Authors: Druckenbrod NR, Hale EB, Olukoya OO, Shatzer WE, Goodrich LV.
Nat Commun
View full abstract on Pubmed
Detailed analysis of chick optic fissure closure reveals Netrin-1 as an essential mediator of epithelial fusion.
Authors: Authors: Hardy H, Prendergast JG, Patel A, Dutta S, Trejo-Reveles V, Kroeger H, Yung AR, Goodrich LV, Brooks B, Sowden JC, Rainger J.
Elife
View full abstract on Pubmed
Mafb and c-Maf Have Prenatal Compensatory and Postnatal Antagonistic Roles in Cortical Interneuron Fate and Function.
Authors: Authors: Pai EL, Vogt D, Clemente-Perez A, McKinsey GL, Cho FS, Hu JS, Wimer M, Paul A, Fazel Darbandi S, Pla R, Nowakowski TJ, Goodrich LV, Paz JT, Rubenstein JLR.
Cell Rep
View full abstract on Pubmed
Talking back: Development of the olivocochlear efferent system.
Authors: Authors: Frank MM, Goodrich LV.
Wiley Interdiscip Rev Dev Biol
View full abstract on Pubmed
Sensory Neuron Diversity in the Inner Ear Is Shaped by Activity.
Authors: Authors: Shrestha BR, Chia C, Wu L, Kujawa SG, Liberman MC, Goodrich LV.
Cell
View full abstract on Pubmed