Clifford Woolf

Clifford Woolf, MB, BCh, PhD

Professor of Neurology, Harvard Medical School

Adaptive and Maladaptive Plasticity in Sensory and Motor Systems

Neurons are subject to functional, chemical and structural plasticity. This plasticity is an important factor both in the normal function of the nervous system and in a vast range of neurological diseases.

The Woolf lab studies how different forms of neuronal plasticity contribute both to adaptive and maladaptive changes in the mammalian nervous system, particularly in relation to pain, regeneration and neurodegenerative diseases.

Most of our work is concentrated on primary sensory and motor neurons, and to the interaction of neurons and immune cells, using a multidisciplinary approach spanning stem cell, molecular and cell biology, electrophysiology, neuroanatomy, behavior and genetics. We have established functional and comparative genomic strategies using expression profiling, bioinformatics and gain- and loss-of-function approaches, to screen for novel genes that contribute to neuronal plasticity and disease phenotypes. Our group works closely with many academic groups and the pharmaceutical industry to model disease and identify molecular targets for novel analgesics, axonal growth determinants and neuroprotective agents.

Current research includes study of the transcriptional control and post-translational processing of receptors and ion channels that mediate pain hypersensitivity, selective silencing of defined neuronal populations, intracellular signal transduction cascades activated by peripheral inflammation and nerve injury, neuro-immune interactions, transcription factors as master regulators of pain, growth and survival programs, cell survival in injured sensory and motor neurons, and the contribution of intrinsic growth determinants in establishing regenerative capacity in the peripheral and central nervous system. We are an active part of the Harvard Stem Cell Institute and are investigating how sensory and motor neurons reprogrammed from patient fibroblasts can be used to study pain and motor neuron disease and to screen for new treatments.

Publications View
Doublecortin-Like Kinases Promote Neuronal Survival and Induce Growth Cone Reformation via Distinct Mechanisms.
Authors: Authors: Nawabi H, Belin S, Cartoni R, Williams PR, Wang C, Latremolière A, Wang X, Zhu J, Taub DG, Fu X, Yu B, Gu X, Woolf CJ, Liu JS, Gabel CV, Steen JA, He Z.
Neuron
View full abstract on Pubmed
The Stress-Induced Atf3-Gelsolin Cascade Underlies Dendritic Spine Deficits in Neuronal Models of Tuberous Sclerosis Complex.
Authors: Authors: Nie D, Chen Z, Ebrahimi-Fakhari D, Di Nardo A, Julich K, Robson VK, Cheng YC, Woolf CJ, Heiman M, Sahin M.
J Neurosci
View full abstract on Pubmed
Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation.
Authors: Authors: Talbot S, Abdulnour RE, Burkett PR, Lee S, Cronin SJ, Pascal MA, Laedermann C, Foster SL, Tran JV, Lai N, Chiu IM, Ghasemlou N, DiBiase M, Roberson D, Von Hehn C, Agac B, Haworth O, Seki H, Penninger JM, Kuchroo VK, Bean BP, Levy BD, Woolf CJ.
Neuron
View full abstract on Pubmed
From Dish to Bedside: Lessons Learned While Translating Findings from a Stem Cell Model of Disease to a Clinical Trial.
Authors: Authors: McNeish J, Gardner JP, Wainger BJ, Woolf CJ, Eggan K.
Cell Stem Cell
View full abstract on Pubmed
Research design considerations for chronic pain prevention clinical trials: IMMPACT recommendations.
Authors: Authors: Gewandter JS, Dworkin RH, Turk DC, Farrar JT, Fillingim RB, Gilron I, Markman JD, Oaklander AL, Polydefkis MJ, Raja SN, Robinson JP, Woolf CJ, Ziegler D, Ashburn MA, Burke LB, Cowan P, George SZ, Goli V, Graff OX, Iyengar S, Jay GW, Katz J, Kehlet H, Kitt RA, Kopecky EA, Malamut R, McDermott MP, Palmer P, Rappaport BA, Rauschkolb C, Steigerwald I, Tobias J, Walco GA.
Pain
View full abstract on Pubmed
Early psychological reactions in parents of children with a life threatening illness within a pediatric hospital setting.
Authors: Authors: Muscara F, McCarthy MC, Woolf C, Hearps SJ, Burke K, Anderson VA.
Eur Psychiatry
View full abstract on Pubmed
Reduction of Neuropathic and Inflammatory Pain through Inhibition of the Tetrahydrobiopterin Pathway.
Authors: Authors: Latremoliere A, Latini A, Andrews N, Cronin SJ, Fujita M, Gorska K, Hovius R, Romero C, Chuaiphichai S, Painter M, Miracca G, Babaniyi O, Remor AP, Duong K, Riva P, Barrett LB, Ferreirós N, Naylor A, Penninger JM, Tegeder I, Zhong J, Blagg J, Channon KM, Johnsson K, Costigan M, Woolf CJ.
Neuron
View full abstract on Pubmed
Robust Axonal Regeneration Occurs in the Injured CAST/Ei Mouse CNS.
Authors: Authors: Omura T, Omura K, Tedeschi A, Riva P, Painter MW, Rojas L, Martin J, Lisi V, Huebner EA, Latremoliere A, Yin Y, Barrett LB, Singh B, Lee S, Crisman T, Gao F, Li S, Kapur K, Geschwind DH, Kosik KS, Coppola G, He Z, Carmichael ST, Benowitz LI, Costigan M, Woolf CJ.
Neuron
View full abstract on Pubmed
Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics.
Authors: Authors: Belin S, Nawabi H, Wang C, Tang S, Latremoliere A, Warren P, Schorle H, Uncu C, Woolf CJ, He Z, Steen JA.
Neuron
View full abstract on Pubmed
The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte elastase.
Authors: Authors: Vicuña L, Strochlic DE, Latremoliere A, Bali KK, Simonetti M, Husainie D, Prokosch S, Riva P, Griffin RS, Njoo C, Gehrig S, Mall MA, Arnold B, Devor M, Woolf CJ, Liberles SD, Costigan M, Kuner R.
Nat Med
View full abstract on Pubmed