Gord Fishell

Gord Fishell, Ph.D.

Professor of Neurobiology, Harvard Medical School

The Diverse Landscape of Inhibitory Interneurons

A century ago Ramon y Cajal dubbed the local short axon cells of the brain, the inhibitory interneurons, “the butterflies of the soul”. With characteristic insight, he inferred that these populations, which possess such enormous morphological diversity, would ultimately prove to have an equally impressive breadth of functional attributes. Recent studies have born out this prediction and shown that inhibitory interneurons are much more than simple gatekeepers of excitation. Depending on which interneuron subtype is recruited they are able to refine or unite brain activity in a startling multitude of ways.

The Fishell laboratory is focused on how this diversity is created. Understanding how this is accomplished during development remains one of the most daunting problems in biology. In particular, we wish to understand not only how the vast variety of inhibitory interneuron subtypes are generated but how they subsequently integrate into the bewildering array of neural circuits that are embedded in different brain structures.

Our working hypothesis is that this is achieved through a two-step process. The first involves genetic programs that in accordance with their birthdate create a finite number of cardinal interneuron subtypes. Following the tiling of these newly born cardinal subtypes across different brain structures, local cues act to create the definitive subtypes characteristic of the distinct cortical and subcortical areas. Importantly, as we have explored the molecular control of these events, it has become clear that perturbation of this process can result in a variety of brain dysfunctions including autism spectrum disorder, intellectual disability and schizophrenia. A new and growing interest in the laboratory is therefore aimed at seeing if better understanding of these developmental events can lead to the development of new treatments for these disorders.

Publications View
Pyramidal neurons proportionately alter the identity and survival of specific cortical interneuron subtypes.
Authors: Authors: Wu SJ, Dai M, Yang SP, McCann C, Qiu Y, Marrero GJ, Stogsdill JA, Di Bella DJ, Xu Q, Farhi SL, Macosko EZ, Che F, Fishell G.
Res Sq
View full abstract on Pubmed
Interneuron Diversity: How Form Becomes Function.
Authors: Authors: De Marco García NV, Fishell G.
Cold Spring Harb Perspect Biol
View full abstract on Pubmed
An enhancer-AAV toolbox to target and manipulate distinct interneuron subtypes.
Authors: Authors: Furlanis E, Dai M, Leyva Garcia B, Vergara J, Pereira A, Pelkey K, Tran T, Gorissen BL, Vlachos A, Hairston A, Huang S, Dwivedi D, Du S, Wills S, McMahon J, Lee AT, Chang EF, Razzaq T, Qazi A, Vargish G, Yuan X, Caccavano A, Hunt S, Chittajallu R, McLean N, Hewit L, Paranzino E, Rice H, Cummins AC, Plotnikova A, Mohanty A, Tangen AC, Shin JH, Azadi R, Eldridge MAG, Alvarez VA, Averbeck BB, Alyahyay M, Reyes Vallejo T, Soheib M, Vattino LG, MacGregor CP, Banks E, Olah VJ, Naskar S, Hill S, Liebergall S, Badiani R, Hyde L, Xu Q, Allaway KC, Goldberg EM, Nowakowski TJ, Lee S, Takesian AE, Ibrahim LA, Iqbal A, McBain CJ, Dimidschstein J, Fishell G, Wang Y.
bioRxiv
View full abstract on Pubmed
Pyramidal neurons proportionately alter the identity and survival of specific cortical interneuron subtypes.
Authors: Authors: Wu SJ, Dai M, Yang SP, McCann C, Qiu Y, Marrero GJ, Stogsdill JA, Di Bella DJ, Xu Q, Farhi SL, Macosko EZ, Chen F, Fishell G.
bioRxiv
View full abstract on Pubmed
Neurogliaform Cells Exhibit Laminar-specific Responses in the Visual Cortex and Modulate Behavioral State-dependent Cortical Activity.
Authors: Authors: Huang S, Rizzo D, Wu SJ, Xu Q, Ziane L, Alghamdi N, Stafford DA, Daigle TL, Tasic B, Zeng H, Ibrahim LA, Fishell G.
Res Sq
View full abstract on Pubmed
Metabotropic signaling within somatostatin interneurons controls transient thalamocortical inputs during development.
Authors:
Nat Commun
View full abstract on Pubmed
Neurogliaform Cells Exhibit Laminar-specific Responses in the Visual Cortex and Modulate Behavioral State-dependent Cortical Activity.
Authors:
bioRxiv
View full abstract on Pubmed
Developmental trajectories of GABAergic cortical interneurons are sequentially modulated by dynamic FoxG1 expression levels.
Authors: Authors: Miyoshi G, Ueta Y, Yagasaki Y, Kishi Y, Fishell G, Machold RP, Miyata M.
Proc Natl Acad Sci U S A
View full abstract on Pubmed
Disruption of Cholinergic Retinal Waves Alters Visual Cortex Development and Function.
Authors: Authors: Burbridge TJ, Ratliff JM, Dwivedi D, Vrudhula U, Alvarado-Huerta F, Sjulson L, Ibrahim LA, Cheadle L, Fishell G, Batista-Brito R.
bioRxiv
View full abstract on Pubmed
An Anatomical and Physiological Basis for Coincidence Detection Across Time Scales in the Auditory System.
Authors: Authors: Kreeger LJ, Honnuraiah S, Maeker S, Shea S, Fishell G, Goodrich LV.
bioRxiv
View full abstract on Pubmed